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We present an analytic method to determine the spectral properties of the covariance matrices constructed of
correlated Wishart random matrices. The method gives, in the limit of large matrices, exact analytic relations
between the spectral moments and the eigenvalue densities of the covariance matrices and their estimators. The
results can be used in practice to extract the information about genuine correlations from the given experi-
mental realization of random matrices.
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Wishart random matrices play an important role in the
multivariate statistical analysisf1,2g. They are useful in some
problems of fundamental physicsf6g, communication and
information theoryf3–5g, internet tradingf7g, and quantita-
tive financef8–10g.

A Wishart ensemble of correlated random matrices is de-
fined by a Gaussian probability measure:

PsXdDX = N−1 expF−
1

2
Tr XtC−1XA −1G p

i,a=1

N,T

dXia, s1d

where X =sXiad is a real rectangular matrix of dimension
N3T. It has two types of indices: anN-type index running
over the seti =1, . . . ,N and aT-type index overa=1, . . . ,T.
Throughout the paper theN-type indices will be denoted by
Latin letters and theT-type by Greek ones.Xt denotes the
transpose ofX. The matricesC=sCijd andA =sAabd are sym-
metric square matrices of dimensionsN3N and T3T, re-
spectively. They are positive definite.N is a normalization
constant:

N = s2pdNT/2sdetCdT/2sdetAdN/2, s2d

chosen to haveePsXdDX =1.
Let QsXd be a quantity depending onX. The average ofQ

over random matrix ensembles1d is defined as

kQl =E QsXdPsXdDX . s3d

In particular, the two-point correlation function is

kXiaXjbl = CijAab, s4d

as directly follows from the Gaussian integration. In this pa-
per we are interested in the spectral behavior, the eigenvalue
distribution and the spectral moments of the following ran-
dom matrices:

c =
1

T
XX t, a =

1

N
Xt X . s5d

These matrices can be used as estimators of the correlation
matricesC andA if some realization of random matricesX
are given. We will refer toc anda as to covariance matrices
or statistically dressed correlation matrices. We will present
an analytic method to determine the eigenvalue distribution
and the spectral moments ofc and a in the limit of large
matrix size. Another method of calculating the eigenvalue
density of correlated Wishart matrices has been recently dis-
cussed inf11g.

In parallel to Eq.s1d one can define a Wishart ensemble of
correlated complex matrices:

PsXdDX = N−1 expf− Tr X†C−1XA −1gp
i,a

dXia
redXia

im. s6d

The matricesC andA are now Hermitian and positive defi-
nite. X† denotes the Hermitian conjugate ofX. The normal-
ization constant is nowN=spdNTsdetCdTsdetAdN. In the
analysis of the complex ensemble the estimatorss5d of the
correlation matrices are replaced correspondingly by

c =
1

T
XX †, a =

1

N
X†X . s7d

Notice that the factor one half in front of the trace in the
measure for real matricess1d is dropped in Eq.s6d. With this
choice of the measure the two-point correlations take the
similar form as for real matricess4d:

kXiaXjb
* l = CijAab. s8d

The star stands for the complex conjugation. Additionally we
also have

kXiaXjbl = kXia
* Xjb

* l = 0. s9d

As a consequence, as we shall discuss towards the end of the
paper, the matricesc anda s5d in the real ensemble have an
identical largeN behavior as the corresponding matricess7d
in the complex ensemble. Since we are interested here only
in the largeN behavior it is sufficient to consider one of the
two ensembles and draw conclusions for the other. We will
focus the presentation on the ensemble of real matrices.
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An example of a problem which can be formulated in
terms of Wishart random matricess1d is the following. Imag-
ine that we probe a statistical system ofN correlated degrees
of freedom by doingT measurements. We store the measured
values of theith degree of freedom in theath measurement
in a rectangular matrixX =sXiad. The degrees of freedom as
well as the measurements may be correlated. This is ex-
pressed by Eq.s4d, which tells us that the covariance matrix
for the correlations between degrees of freedom in the sys-
tem is C=sCijd and for thesautodcorrelation between mea-
surements isA =sAabd. Note that in general the correlations
betweenXia and Xjb may have a more complicated form:
kXiaXjbl=Cia,jb, where the matrixC has double indices. Such
a situation takes place if the autocorrelations are different for
various degrees of freedom. We will not discuss this case
here. Another assumption is that non-Gaussian effects can be
neglected. Such effects might come about if there were col-
lective correlations between many degrees of freedom
or heavy tails in the distribution of an individual degree of
freedom.

A perfect example of the situation described above is the
problem of optimal portfolio assessment—one of the funda-
mental problems of quantitative finance. The portfolio as-
sessment is based on the knowledge of the covariance matrix
C for stocks’ returnsf12g. In practice, the covariance matrix
is estimated from the historical data which are stored in a
rectangular matrix representingT historical values ofN
stocks. Fluctuations of returns are well described by the
Gaussian ensembles1d. The estimator of the covariance ma-
trix is given by Eq.s5d. Another problem of modern financial
analysis which can be directly cast into the forms1d is the
problem of taste matchingf7g. This problem is encountered
for instance in the large-scale internet trading.

It is worth mentioning that the random matrix framework
may also be used in a statistical description of data generated
in Monte Carlo simulations for a system with many degrees
of freedom, in particular of data concerning the correlation
functions. One frequently encounters such a problem in
Monte Carlo simulations of lattice field theory, where the
field is represented by correlated numbers distributed on a
lattice. Usually, one is forced to use a dynamical Monte
Carlo algorithm to sample such a system. The basic idea
standing behind a dynamical algorithm is to generate a Mar-
kov chain—a sort of a random walk—in the space of con-
figurations. The degrees of freedom on the lattice as well as
the successive configurations are usually correlated. Outside
a critical region no long range correlations are observed and
the fluctuations can be treated as Gaussian.

Complex random matrices are useful for instance in tele-
communication or information theoryf3–5g.

Let us come back to the ensemble of real matricess1d. As
we mentioned the matricess5d can be treated as estimators of
the correlation matricesC andA. Indeed from Eq.s4d we see
that

kcijl =K 1

T
o
a

XiaXjaL = MA1Cij , s10d

kaabl =K 1

N
o

i

XiaXibL = MC1Aab, s11d

whereMC1=s1/NdTr C andMA1=s1/TdTr A. This notation
will be explained later. The last equation tells us that mea-
suring the average ofc over the ensembles1d we obtain the
matrix C up to a constant. In other words, having a realiza-
tion of random matricesX we can use Eq.s5d to estimateC.
Similarly, we can usea to estimateA. Notice that the mea-
sure s1d is invariant under the transformationC→bC and
A →b−1A, whereb is an arbitrary positive real number. In
particular kcijl and kaabl are independent of the rescaling
factorb. This independence is ensured by the presence of the
factorsMA1 andMC1 in Eqs.s10d and s11d. In practical cal-
culations, if TrA and TrC are not specified, one can remove
the redundancy with respect to the rescaling byb, setting
s1/TdTr A =s1/NdTr C. In this case the constantsMA1

=MC1 can be determined from the data by evaluating the
traces ofc or a:

MC1 = MA1 =Î 1

N
Trkcl =Î1

T
Trkal.

While considering the covariance matrices for the Wishart
ensemble we can formulate two reciprocal problems, which
we shall calldirect and inverse problems. In the direct prob-
lem we want to learn as much as possible about the probabil-
ity distribution of the estimatorsc and a s5d assuming that
the matricesC and A are given. In particular, we want to
calculate the eigenvalue density functions:

rcsld =K 1

N
o
i=1

N

dsl − lidL ,

rasld =K 1

T
o
a=1

T

dsl − ladL ,

whereli andla are eigenvalues ofc anda, respectively. The
determination of the eigenvalue density functions is equiva-
lent to the determination of all their spectral moments:

mck =E dlrcsldlk =K 1

N
Tr ckL ,

mak =E dlrasldlk =K 1

T
Tr akL .

The momentsmck, mak are related to each other

mak = r1−kmck, s12d

wherer =N/T, as follows from the cyclicity of the trace:

Tr XX t
¯ XX t = Tr XtX ¯ Xt X .

In the inverse problem we want to learn as much as possible
about the genuine correlations in the system, which are given
by C andA, using a measured sample of random matricesX.
We can do this by computing the estimatorsc anda s5d and
relating them to matricesC, A. In particular we would like to
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estimate the eigenvalue distributions and the moments of
C, A:

MCk =
1

N
Tr Ck =

1

N
o
i=1

N

Li
k,

MAk =
1

T
Tr Ak =

1

T
o
a=1

T

La
k ,

whereLi and La are eigenvalues ofC andA, respectively.
The inverse problem is very important for practical applica-
tions, since in practice it is very common to reconstruct the
properties of the underlying system from the experimental
data.

In the analysis of the spectral properties of the matricesa
and c it is convenient to apply the Green’s function tech-
nique. One can define Green’s functions for the correlation
matrix C and its statistically fluctuating counterpartc:

GCszd =
1

z1N − C
, s13d

gcszd =K 1

z1N − c
L , s14d

and correspondinglyGAszd andgaszd for A anda. The sym-
bol 1N stands for theN3N identity matrix. A corresponding
symbol1T appears in the definition ofGAszd andgaszd. The
Green’s functions are related to the generating functions for
the moments:

MCszd = o
k=1

`
MCk

zk =
1

N
Tr„zGCszd… − 1, s15d

mcszd = o
k=1

`
mck

zk =
1

N
Tr„zgcszd… − 1, s16d

or inversely

1

N
Tr GCszd =

1 + MCszd
z

,

1

N
Tr gcszd =

1 + mcszd
z

. s17d

The analogous relations exist forGAszd and gaszd. The
Green’s functions can be used for finding the densities of
eigenvalues:

rcsld = −
1

p
Im

1

N
Tr gcsl + i0+d = −

1

p
Im

1 + mcsl + i0+d
l + i0+ ,

s18d

and similarly forrasld. The eigenvalue densitiesrasld are
not independent. As follows from Eq.s12d the corresponding
generating functionss16d fulfill the equation

maszd = rmcsrzd. s19d

Combining the last equation with Eq.s17d we obtain

1

T
Tr gaszd = r2 1

N
Tr gcsrzd +

1 − r

z
. s20d

Applying now Eq.s18d we have

rasld = r2rcsrld + s1 − rddsld. s21d

The meaning of the last term on the right-hand side of this
equation is that there areT−N zero modes in the matrixa if
T.N. The zero modes disappear whenN=T. Moving the
term containing the delta function to the other side of equa-
tion, dividing both sides of the equation byr2 and substitut-
ing the parameterr by s=T/N=1/r we obtain

rcsld = s2rassld + s1 − sddsld. s22d

Therefore, forT,N the zero modes appear in the spectrum
rcsld. In this case it is more convenient to use the parameter
s=1/r instead ofr. The zero modes appear in the eigenvalue
distribution of eithera or c. The two equationss21d ands22d
are dual to each other. Forr =s=1 they are identical. Because
of the duality it is sufficient to solve the problem forr ø1.
We will present a solution for the limitr =N/T=constø1
and N→` neglecting effects of the order 1/N, expanding
Green’s function in 1/N. The largeN limit and the 1/N ex-
pansion are well defined if the spectra of the matricesA and
C are bounded from above by a constant independent ofN.
Otherwise the moments’ expansion and the generating func-
tions do not exist in this limit.

Using a diagrammatic methodf13–15g one can write
down a close set of equations for the Green’s function
gcszd s14d:

gcszd =
1

z1N − Scszd
, g*cszd =

1

T1T − S*cszd
,

Scszd = C Tr„Ag*cszd…, S*cszd = A Tr„Cgcszd…. s23d

The set contains four equation for four unknown matrices
including gcszd which we want to calculate, and three auxil-
iary ones:g*cszd, Scszd, andS*cszd ssee Appendix Ad. Each
of them can be interpreted in terms of a generating function
for appropriately weighted diagrams with two external lines:
gcszd, g*cszd for all diagrams andScszd, S*cszd for one-line-
irreducible diagramsf13–15g ssee Appendix Ad. In the limit
N→` the weights of nonplanar diagrams vanish at least as
1/N. Thus in this limit only planar diagrams give a contri-
bution to the Green’s function. Therefore, the largeN limit is
alternatively called the planar limit. The diagrammatic equa-
tions s23d hold only in this limit. An analogous set of equa-
tions can be written for the Green’s functiongaszd. The equa-
tions are identical to those of Eq.s23d if one exchanges
a↔c, A ↔C and T↔N. The two sets can be solved inde-
pendently of each other. However, as follows from the dual-
ity s20d it is sufficient to solve only one of them and deduce
the solution of the other.

Equationss23d can be solved forgcszd by a successive
elimination ofg*cszd, Scszd, andS*cszd. However, the result-
ing equation forgcszd is very entangledf14g:
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gcszd = Sz1N − C Tr
A

1TT − A Tr„Cgcszd…D
−1

, s24d

and cannot be easily used in practice for analytical calcula-
tions of the momentsmck or spectral densityrcsld. If one
takes trace on both sides of the equation one does not get a
close formula for Trgcszd since the matrixgcszd appears
in the combination TrCgcszd on the right-hand side of the
equation.

Below we will present an alternative method of solving
Eq. s23d, along the lines proposed inf15g, which gives a
close scalar equation for Trgcszd and thus also equations for
the moments and spectral density of the matrixc. This
method relies on introducing a new complex variableZ con-
jugate toz which is defined by the equation

mcszd = MCsZd. s25d

At the first glance this equation looks useless because it re-
fers to an unknown functionmcszd which we actually want to
determine. Quite contrary to this, as we shall see, the intro-
duction of the conjugate variableZ allows us to write down
a close functional equation formcszd. First, let us illustrate
how the method works forA =1T f15g. In this case, the elimi-
nation of the auxiliary functionss23d leads to

Z =
z

1 + rmcszd
, s26d

or equivalently to

z= Zf1 + rMCsZdg. s27d

Suppose we solve the direct problem. In this case we know
the matrixC and hence also the generating functionMCsZd.
Inserting Eq.s26d to Eq. s25d we obtain a close compact
functional relation formcszd:

mcszd = MCS z

1 + rmcszdD . s28d

If MCsZd has a simple form, one can solve the equation for
mcszd analytically f15g. All the cases considered there con-
cern the matrixC having one, two or three distinct eigenval-
ues. In general, forC having more than three eigenvalues
one can write a numerical program to calculate the eigen-
value densityrcsld from the last equation for any given
MCsZd and thus for any correlation matricC. This is easier
than solving Eq.s24d because we have only one equation
with one unknown variablemc. In case of solving the inverse
problem, we assume that we can determine momentsmck
from the data and hence that we can approximate the gener-
ating functionmcszd. Then we can insert Eq.s27d to Eq.s25d
and obtain a functional equation forMCsZd:

MCsZd = mc„Zf1 + rMCsZdg…. s29d

The problem is solved in principle. However, in practical
terms the inverse problem is much more difficult, because
one cannot compute all experimental momentsmck with an
arbitrary accuracy, unless one has an infinitely long series of
measurements. But one never has. In practice one can esti-
mate only a few lower momentsmck with a good accuracy.

Because of this practical limitation one cannot entirely solve
the inverse problem. However, as we discussed inf10g the
inverse problem can be partially solved even in specific prac-
tical applications using a moments method. Let us sketch this
method below.

We can gain some insight into the spectral properties of
the correlation matrixC by determining the relation between
the momentsMCk and mck. Expanding the functionsMCszd
and mcszd in Eq. s28d in 1/z using Eqs.s15d and s16d and
comparing the coefficients at 1/zk we obtain

mc1 = MC1,

mc2 = MC2 + rMC1
2 ,

mc3 = MC3 + 3rMC1MC2 + r2MC1
3 ,

mc4 = MC4 + 2rsMC2
2 + 2MC1MC3d + 6r2MC1

2 MC2 + r3MC1
4 ,

. . . . s30d

We can also invert the equations forMCk. The result of in-
version gives a set of equations which can be directly ob-
tained from the 1/Z expansion of the functions in Eq.s29d
which is the inverse transform of Eq.s28d. We can also de-
termine the corresponding relations for “negative” moments
mck andMCk, that is fork,0, or determine the spectral den-
sity rcsld f15g. Using a computer tool for symbolic calcula-
tions one can easily write a program which successively gen-
erates the relations between spectral momentss30d from
Eq. s28d.

The calculations get more complicated in the general case
when bothC andA are arbitrary. The guiding principle is the
same, though. We introduce the conjugate variableZ s25d
and, using it, write down the solution of Eqs.s23d. In the
direct problem we assume that the generating functions
MCsZd andMAsZd are known. We will show that in this case
the solution of Eq.s23d takes a form of an explicit equation
for z=zsZd, where the functionzsZd depends on the functions
MCsZd and MAsZd. Inserting this solution back to Eq.s23d
we eventually obtain a functional equationmc(zsZd)
=MCsZd from which we can extract the functionmcszd.

The solution of Eq.s23d takes the form:

z

Z
=

1

T
o
a=1

T
La

1 − Lar
Z

z
MCsZd

, s31d

whereLa are eigenvalues ofA. It can be rewritten as

rMCsZd = MAS z

rZMCsZd
D , s32d

and can be formally solved forz:

z= ZrMCsZdMA
−1
„rMCsZd…, s33d

where MA
−1 is the inverse function ofMA. Thus we have

obtained an explicit equation forz=zsZd in terms of the
known functionsMA andMC. One can easily check that for
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A =1T the last equation reduces to Eq.s27d. In this case
MAszd=1/sz−1d andMA

−1szd=1+1/z.
Combining the equation forz=zsZd given by Eq. s33d

with Eq. s25d we arrive at a close equation for the generating
function mcsZd. It can be used for example to calculate the
momentsmck’s ssee Appendix Bd. The calculations yield a set
of equations expressingmck’s in terms of the bare moments
MAk andMCk:

mc1 = MC1MA1,

mc2 = MC2MA1
2 + rMC1

2 MA2,

mc3 = MC3MA1
3 + 3rMC1MC2MA1MA2 + r2MC1

3 MA3,

mc4 = MC4MA1
4 + 2rsMC2

2 + 2MC1MC3dMA1
2 MA2

+ 2r2MC1
2 MC2sMA2

2 + 2MA1MA3d + r3MC1
4 MA4,

. . . . s34d

The equations reduce to the forms30d for A =1T.
Using the relationss12d we can also determine the mo-

ments of the matrixa. It is more convenient to write them
using the variables=r−1—the dual counterpart ofr—instead
of r itself:

ma1 = MA1MC1,

ma2 = MA2MC1
2 + sMA1

2 MC2,

ma3 = MA3MC1
3 + 3sMA1MA2MC1MC2 + s2MA1

3 MC3,

ma4 = MA4MC1
4 + 2ssMA2

2 + 2MA1MA3dMC1
2 MC2

+ 2s2MA1
2 MA2sMC2

2 + 2MC1MC3d + s3MA1
4 MC4,

. . . . s35d

The equations are completely symmetric to Eq.s34d with
respect to the changer ↔s swhich amounts toN↔Td, and
c↔a, C↔A. Using the method one can obtain Eqs.s34d
and s35d to an arbitrary order.

The above relations are useful for computing the dressed
momentsmak,mck for given matricesA ,C or inversely, the
genuine momentsMAk,MCk from the experimental data. As
mentioned, the spectral moments give us in principle full
information about the eigenvalue distribution. In practice the
reconstruction of the eigenvalue density may be difficult, be-
cause to do it we would need to know all moments with a
very good precision. Usually, in practical applications one
can accurately evaluate only a few lower moments.

In some special cases if we can make some extra assump-
tion about the form of the matricesC or A we can improve
significantly the reconstruction of the eigenvalue density. In
the previous workf15g we have analyzed the case ofA =1T
and of the matrixC which had only a few distinct eigenval-
ues. In this case the Green’s functiongcszd is given by an
algebraic equation of the order which is equal to the number
of distinct eigenvalues. It can be analytically solved when

this number is less or equal to four. If it is larger the problem
can be handled numerically. The duality tells us that the so-
lution also holds when we change the roles ofA andC.

Below we will discuss the case of exponential autocorre-
lations. Exponential correlations are encountered in many
situations. The general solution, which we have discussed so
far, simplifies in this case to a more compact relation for the
Green’s function, which allows us to find analytically an ap-
proximate form of the eigenvalue density of the random ma-
tricesc anda. The approximation becomes exact in the large
N limit. We consider purely exponential autocorrelations
given by the autocorrelation matrix

Aab = expf− ua − bu/tg, s36d

wheret controls the range of autocorrelations. The inverse of
the matrixA reads

A−1 =
1

2s13
e1, − 1,

− 1, 2c1, − 1,

. . . . . . . . .

− 1, 2c1, − 1

− 1, e1

4 . s37d

We have introduced here a shorthand notatione1=exps1/td,
c1=coshs1/td ands1=sinhs1/td. The spectrum of this matrix
can be approximated by the spectrum of a matrixM :

M =
1

2s13
2c1, − 1, − 1

− 1, 2c1, − 1,

. . . . . . . . .

− 1, 2c1, − 1

− 1, − 1, 2c1

4 , s38d

whose eigenvalues can be found analytically:

ma = fc1 + cosspa/Tdg/s1.

The corresponding eigenvectors are given by the Fourier
modes. The matrix 2s1·M can be viewed as of a sum:
s2c1−2d1T+DT, of a unity matrix multiplied by a constant
and a discretized one-dimensional LaplacianDT for a cyclic
chain of lengthT. The matrixA−1 can be obtained fromM
by adding to it a perturbationP: A−1=M +P, where P
has only four nonvanishing elements:P11=PTT=e1

−1 and
P1T=PT1=1. The first order corrections to the eigenvalues of
A−1, which stem from the perturbationP, behave as 1/T. The
perturbationP can be viewed as a change of a boundary
condition of the Laplacian. As usual, boundary conditions
affect mostly the longestssmall momentumd modes. Indeed,
a careful analysis shows that the two diagonal terms of the
perturbation matrix,P11=PTT, introduce a constant correc-
tion independent ofT of the lowest eigenvalues which does
not vanish whenT goes to infinity. However, since the dif-
ferences between unperturbed eigenvalues ofM and the cor-
responding perturbed eigenvalues ofA−1 disappear for all
other eigenvalues, we expect that fort!T the spectral
properties ofA can be well approximated by the eigenvalues
of M −1:
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La <
1

ma

=
s1

c1 + cosspa/Td
. s39d

In this limit we can also approximate the sums31d by an
integral:

z

Z
<

s1

p
E

0

p dt

sc1 − s1Fd + cost
, s40d

where t=pa /T and the symbolF;sZ/zdrmcszd is intro-
duced for brevity. Note that in the definition ofF we have
replacedMCsZd, which would rather be dictated by Eq.s31d,
by mcszd. This change is legitimate due to Eq.s25d. The
integral s40d can be done:

z

Z
=

s1

Îsc1 − s1Fd2 − 1
. s41d

Setting backF=sZ/zdrmcszd we eventually obtain

Z = z
c1rmcszd − Îs1

2 + r2mc
2szd

s1fr2mc
2szd − 1g

. s42d

This is an explicit equation forZ=Zszd which can be now
inserted tomcszd=MCsZd giving us a compact relation for
mcszd in the presence of the exponential autocorrelations
s36d:

mcszd = MCSz
c1rmcszd − Îs1

2 + r2mc
2szd

s1fr2mc
2szd − 1g

D . s43d

In the limit t→0, the parameters s1=sinhs1/td,
c1=coshs1/td and e1=exps1/td increase to infinity and
c1/e1<s1/e1<1. As a consequence, the form of Eq.s42d
simplifies to Eq.s26d, which corresponds to the case without
autocorrelations, as expected. Using Eq.s43d we can recur-
sively generate equations for the consecutive moments:

mc1 = MC1,

mc2 = MC2 + rMC1
2 · t1,

mc3 = MC3 + 3rMC1MC2 · t1 + r2MC1
3 S3

2
t1
2 −

1

2
D ,

mc4 = MC4 + 2rsMC2
2 + 2MC1MC3dt1 + 2r2MC1

2 MC2s4t1
2 − 1d

+ r3MC1
4 S5

2
t1
3 −

3

2
t1D ,

. . . , s44d

where t1=c1/s1=coths1/td. The coefficients on the right-
hand side, which depend ont1, can be directly expressed in
terms of the momentsMAk of the matrixA. Approximating
again a sum by an integral in the largeT limit we can write

MAk =
1

T
o
a=1

T

La
k <

s1
k

p
E

0

p dt

sc1 + costdk .

The integrals can be calculated yielding

MA1 = 1,

MA2 = t1,

MA3 =
3

2
t1
2 −

1

2
,

MA4 =
5

2
t1
3 −

3

2
t1,

. . . . s45d

We see that if we insert these coefficients into Eqs.s34d we
obtain Eq.s44d. This is a consistency check for the approxi-
mation which we use here. The quality of this approximation
can also be checked by comparing the momentsMAk of the
matrix s36d for finite T with the results45d which corre-
sponds toT=`. We expect that fort!T the numerical values
shall approach the results45d. The results of this comparison

TABLE I. The momentsMA2, MA3 and MA4 of the matrixA s36d for three values of the autocorrelation lengtht=1,5,10calculated
numerically for finite sizeT=20, . . . ,500 and by the analytic formulas45d which corresponds toT=`. The finite size values approach the
values given by Eq.s45d asT/ t tends to infinity.

t=1 t=5 t=10

T MA2 MA3 MA4 T MA2 MA3 MA4 T MA2 MA3 MA4

20 1.29493 2.01479 3.48620 20 4.44996 28.6455 204.107 20 7.58726 79.6134 891.336

50 1.30579 2.05757 3.60838 50 4.81980 34.2544 271.932 50 9.03668 120.509 1784.56

100 1.30941 2.07183 3.64911 100 4.94314 36.1292 294.733 100 9.53497 135.501 2146.93

200 1.31123 2.07896 3.66947 200 5.00482 37.0666 306.133 200 9.78414 143.001 2328.48

500 1.31231 2.08324 3.68169 500 5.04182 37.6290 312.973 500 9.93364 147.501 2437.40

` 1.31304 2.08609 3.68983 ` 5.06649 38.0040 317.534 ` 10.0333 150.501 2510.02
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confirm our expectationsssee Table Id. Thus we see that the
formula s44d for mcszd in the presence of the exponential
autocorrelations becomes exact in the limitT=`. This for-
mula allows us to compute the eigenvalue distribution of the
random matricesc and a s5d. Let us illustrate this on the
simplest example of the system which has no correlations:
that means thatC=1N andMCsZd=1/sZ−1d. In this case Eq.
s43d for mcszd takes the form

t1x
2 −

1

z
sx2 − 1dsx + rd − xÎ1 + x2/s1

2 = 0, s46d

where we used the notationxszd=rmcszd. For t→0
sA →1Td this equation reduces to

sx − 1dFx −
1

z
sx + 1dsx + rdG = 0, s47d

which has a solution

xszd =
1

2
„− 1 − r − iÎsm+ − zdsz− m−d + z…, s48d

wherem±=s1±Îrd2, which leads to the well-known result for
the uncorrelated Wishart ensemble:

rcsld =
1

2pr

Îsm+ − ldsl − m−d
l

. s49d

For t.0 it is still possible to find analytically a solution of
Eq. s46d. Let us rewrite Eq.s46d as a polynomial equation:

− z2x2s1 + x2/s1
2d + „t1zx2 − sr + xdsx2 − 1d…2 = 0.

It has two trivial solutionsx= ±1. Dividing out the polyno-
mial sx−1dsx+1d we get

x4 + 2x3sr − t1zd + x2s− 1 + r2 − 2t1rz + z2d − 2rx − r2 = 0.

s50d

This is a quartic equation which can be solved analytically
by the Ferrari method. We will not present the formal solu-
tion which is neither transparent nor informative. Instead, we
show in Fig. 1 the eigenvalue density functionsrcsld, for
different t, resulting from this solution. The lower part of the

distribution approaches zero whent increases, but zero
modes do not appear in the distribution as long asr ,1. The
formula s43d applies to any correlation matrixC but in the
general case one has to use a numerical procedure to calcu-
late from it the density function.

Let us stop here the presentation of results for the en-
semble of real matrices. As we mentioned all results in the
largeN limit hold also in the ensemble of complex matrices
if the covariance matricess5d are replaced by Eq.s7d. The
reason why it is so is related to the fact that the moments of
c=s1/TdXX † in the ensemble of complex matricess6d are
equal to the moments ofc=s1/TdXX t in the real ensemble
s1d up to a 1/N corrections which disappear in the largeN
limit:

1

N
KS1

T
XX †DkL

complex
=

1

N
KS1

T
XX tDkL

real
+ Os1/Nd.

s51d

Let us illustrate this by explicit calculations of the second
moment. Using the Wick’s theorem for Gaussian integrals
and Eq.s4d for the two-point correlation function, we have

1

N
KS1

T
XX tD2L =

1

NT2kXiaXjaXjbXibl

=
1

NT2hkXiaXjalkXjbXibl + kXiaXiblkXjaXjbl

+ kXiaXjblkXjaXiblj

=
1

NT2hCijAaaCjiAbb + CiiAabCjjAab

+ CijAabCjiAabj

= MC2MA1
2 + rMC1

2 MA2 +
r

N
MC2MA2.

The corresponding calculations for the complex ensemble
read

1

N
KS1

T
XX †D2L =

1

NT2kXiaXja
* XjbXib

* l

=
1

NT2hkXiaXja
* lkXjbXib

* l + kXiaXib
* lkXjaXjb

* l

+ kXiaXjblkXja
* Xib

* lj

=
1

NT2hCijAaaCjiAbb + CiiAabCjjAabj

= MC2MA1
2 + rMC1

2 MA2.

The difference between the two calculations appears in the
third term which in the real ensemble gives a contribution of
the order 1/N while in the complex ensemble disappears by
virtue of Eq. s9d. We recognize thatMC2MA1

2 +rMC1
2 MA2

which are the leading terms in the 1/N expansion are iden-
tical as in the second equation in the sets34d. Generally one
can show that the leading contributions which correspond to
the planar diagrams in the expansion ofgcszd are identical for
both ensembles. Nonplanar diagrams are different but they

FIG. 1. The density of eigenvaluesrcsld for exponential matrix
A ,C=1N,r =0.2 and for three different autocorrelation timest : t
=0 ssolid lined, t=2 sdashed lined, andt=5 sdotted lined.
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contribute in the subleading orders: it turns out that in the
diagrammatic expansion of the Green’s functiongcszd for the
complex matrix ensembles6d, which would be a counterpart
of Eq. sA1d in Appendix A, all diagrams which contain a
double arc whose dashed and solid lines cross each other are
identically equal zero, since such an arc corresponds to the
propagatorkXiaXjbl or kXia

* Xjb
* l. A crossing of two arcs is

however allowed and leads to a factor 1/N2.
To summarize, in the paper we considered a Wishart en-

semble of correlated random matrices. We obtained in the
limit of large matrices a close set of equations relating the
Green’s function or equivalently the moments’ generating
functions mcszd and maszd for statistically dressed correla-
tions to the generating functions for genuine correlation ma-
trices MCszd and MAszd. The equations in the largeN limit
are the same for the ensemble of real and complex matrices.
Using these equations we can write down exact relations
between genuine and experimental spectral moments of cor-
relation functions of an arbitrary order. The relations can be
used in practical problems to learn about correlations in the
studied system from the experimental samples. In the case of
exponential correlations we have also found an explicit form
the spectral density function of the covariance matrix. A
natural generalization of the work presented here is to con-
sider a more general type of time correlations than purely

exponentials36d. If the correlations are of the form which
depends on the time differenceAa,b=Asua−bud then one can
apply Fourier transform to determine in the largeT limit an
approximate spectrum of the matrixA and approximate val-
ues of its spectral moments. Some details are given in Ap-
pendix C.

Another interesting issue which can be addressed in the
future is the determination of the probability distribution for
individual elements of the covariance matricesc anda simi-
larly as it was done for the uncorrelated casef16g.
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APPENDIX A

For completeness we recall here the graphical representa-
tion of the Green’s function. The details of the diagrammatic
method can be found inf13–15g. The Green’s functiongcszd
can be represented as a sum over diagrams:

sA1d

where theN-type andT-type indices ofX are denoted by filled and empty circles, respectively. The matrixX is denoted by an
ordered pair of neighboring filled and empty circles, whileXt is drawn as an pair of such circles in the reverse order. A
horizontal solid line stands for1N/z, a dashed line for1T/T, a solid arc forC and a dashed arc forA. The two point function
s4d is drawn as a double arc. Matrices on a line are multiplied in the order of appearance on this line. If a line is closed, the
trace is taken.

In the thermodynamical limit only planar diagrams give contribution togc. In particular the last term in Eq.sA1d vanishes.
The Green’s functiongc*szd is represented by an identical set of diagrams with dashed and solid lines exchanged. It is
convenient to introduce one-line irreducible diagrams and corresponding generating functionsSc and S*c. The Green’s
functions can be expressed in terms ofSc andS*c as follows:

sA2d

sA3d

In the planar limit there are two additional equations which relate the sums over one-line irreducible diagrams to the Green’s
functions:

sA4d
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Analogous diagrammatic equations can be written Forga
with the only difference that the solid line shall denote the
propagator1T/z and the dashed shall line denote1N/N.

APPENDIX B

In this appendix we use Eqs.s33d and s25d to determine
the relationss34d. As for the caseA =1T we shall do this
using 1/z expansion. The functionMAsZd is given by the
series

MAsZd =
MA1

Z
+

MA2

Z2 +
MA3

Z3 + ¯ . sB1d

Let us determine the expansion for the inverse functionMA
−1

as a series around zero:

MA
−1syd = MA1y

−1s1 + m1y + m2y
2 + ¯ d. sB2d

The coefficients of the series can be directly calculated from
the condition

y = MA„MA
−1syd…, sB3d

which gives us

m1 =
MA2

sMA1d2, m2 =
MA3MA1 − sMA2d2

sMA1d4 , . . . . sB4d

Equations33d takes the form

z= MA1Zf1 + m1rMCsZd + m2r
2MC

2 sZd + ¯ g. sB5d

or, if written for 1/z,

1

z
=

1

MA1

1

Z
f1 − m1rMCsZd + sm1

2 − m2dr2MC
2 sZd + ¯ g,

sB6d

where

MCsZd =
MC1

Z
+

MC2

Z2 +
MC3

Z3 + ¯ . sB7d

Thus we have expressed 1/z as a series of 1/Z. Inserting this
series to Eq.s25d and comparing coefficients at 1/Zk we
eventually obtain Eq.s34d.

APPENDIX C

Let A be a T3T symmetric square matrix such that
Aab=Aba=Asua−bud. Assume also thatAs0d.As1d.As2d
. ¯ .AsT−1d.0. One can show that under this assump-
tion the matrixA is positive definite. The eigenproblem for
this matrix can be written in the form:

o
s=−T/2+1

T/2

Ast − sdxassd = Laxastd. sC1d

In the equation above it is convenient to choose the set ofT
values, which the indexs may assume, to be −T/2+1,
−T/2+2, . . . ,T/2. This choice is appropriate ifT is even,
while if T is odd one should rather choose −sT−1d /2 ,

−sT−1d /2+1, . . . ,sT−1d /2. The same holds for the indexa
which enumerates the eigenvalues. We are interested in the
spectrum of the matrixA in the limit of T→`. In this limit
the eigenvectors can be approximated byeivt:

o
s=−`

`

Ast − sdeivs = o
s=−`

`

Ast − sde−ivst−sdeivt

= o
k=−`

`

Askde−ivkeivt

= Lsvdeivt, sC2d

where

Lsvd = o
k=−`

`

Askde−ivk. sC3d

For finite T the range of summation over the indexk= t−s
depends ont: t−T/2øk, t+T/2. Only in the limitT→` it
becomes independent oft: kP s−` ,`d. The limit T→` can
be safely taken only ifAstd vanishes fast enough for
t→ ±`. For example, ifAstd,1/utua for aø1 the sum on
the right-hand side in Eq.sC3d is divergent forv=0. In other
words, in this case one cannot blindly take the largeT limit
since the results explicitly depend onT. From here on we
assume thatAstd falls off fast enough whent goes to infinity.

The frequencyv: −p,vøp from Eq. sC3d is related to
the index a from Eq. sC1d as v=2pa /T. For T→` the
frequency v becomes a continuous variable. The inverse
transform to Eq.sC3d reads

Askd =
1

2p
E

−p

p

dv Lsvdeivk. sC4d

Actually Eq. sC3d holds only for infiniteT. In this case the
eigenvalues are degenerateLsvd=Ls−vd as follows from
insertingAskd=As−kd to Eq. sC3d. For finiteT the boundary
conditions affect the spectrum. The diagonal striplike struc-
ture of the matrixAab=Asua−bud is broken at the corners of
the matrix since for example the upper leftmost element of
the matrix has no left neighbor. It turns out that the breaking
of this structure is sufficient to lift the degeneration of eigen-
values. In this case the indexv is better mapped into the
range 0,v=pa /Tøp. These effects have to be studied
carefully if one wants to consider corrections to the largeT
formula. We will discuss here only the leading order approxi-
mation given by Eq.sC3d. In this approximation Eq.s31d
takes the form

z

Z
=

1

2p
E

−p

p

dv
Lsvd

1 − LsvdF
=

1

p
E

0

p

dv
Lsvd

1 − LsvdF
.

sC5d

We recall thatF=sZ/zdrmcszd. In the second step we used
Lsvd=Ls−vd. Thus the problem of determining the map
Z=Zszd is reduced to calculating the Fourier transformLsvd
of Askd sC3d. Similarly thekth moment of the spectrum of
the matrixA is approximated by
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MAk =
1

p
E

0

p

Lksvddv. sC6d

We will now present some examples of applying this tech-
nique. Let us begin with multiexponential correlations:
Astd=oiai exps−utu / tid. The Fourier transformsC3d can be
exactly calculated:

Lsvd = o
i

ai
si

ci − cossvd
, sC7d

where ci =coshs1/tid and si =sinhs1/tid. Using Eq.sC5d we
obtain

z

Z
= o

i

ai
si

Îsci − siFd2 − 1
. sC8d

This algebraic equation can be solved analytically forZ
=Zszd for purely exponential correlationsAstd=exps−utu / tcd
which lead to a quadratic equations42d as discussed in the
main body of the text or for double exponential correlations
Astd=a1 exps−utu / t1d+a2 exps−utu / t2d which leads to a Ferrari
equation forZ.

Let us now discuss correlations with a Gaussian autocor-
relation function:Astd=exp(−t2/ s2tc

2d). In this case one can-
not analytically determine the sumsC3d but one can approxi-
mate it by an integral:

Lsvd < E
−`

`

dk Askde−ivk, sC9d

which can be done analytically as a Gaussian integral,
yielding

Lsvd = Î2ptce
−v2tc

2/2. sC10d

If we replace the sumsC3d by the integralsC9d in the Fourier
transform thenk becomes a continuous variable and we have
to correspondingly replace the range of integration overv in
the inverse transform. Instead of Eq.sC4d we have

Askd =
1

2p
E

−`

`

dv Lsvdeivk, sC11d

and correspondingly

MAk =
1

p
E

0

`

Lksvddv =
s2pdsk−1d/2

Îk
tc
k−1. sC12d

This result is in a very good agreement with the numerical
computations for largeT and sufficiently smalltc. If we

change the integration limits in the integralsC5d we obtain
an equation

z

Z
=

1

p
E

0

` dv

sÎ2ptcd−1ev2tc
2/2 − F

, sC13d

which yields

z

Z
=

1
Î2ptcF

o
n=1

`
1

n1/2sÎ2ptcFdn =
1

Î2ptcF
Li1/2sÎ2ptcFd,

sC14d

where Liasxd is polylogarithmsor actually its generalization
to fractional-indexad:

Liasxd = o
n=1

`
xn

na . sC15d

InsertingF=sZ/zdrmcszd we can solve this equation forZ by
inverting the function Li1/2:

Z =
1

Î2ptcrmcszd
Li1/2

−1
„
Î2ptcrmcszd…. sC16d

The coefficientsan of series corresponding to the inverse
function Li1/2

−1 syd=on=1
` any

n can be found recursively by in-
verting the seriessC15d to an arbitrary order.

Similarly one can treat the correlations of the type
Astd=1/sut / tcu2+1d. One obtains

Lsvd = ptce
−vtc, MAk =

sptcdk−1

k
, sC17d

which agree with numerical results. The equation for
Z=Zszd reads

z

Z
=

1

p
E

0

` dv

stcpd−1evtc − F
=

1

pF
E

0

`

dvo
n=1

`

sptcFe−vtcdn

=
1

pFtc
o
n=1

`
1

n
sptcFdn =

1

pFtc
Li1sptcFd

= −
1

pFtc
lns1 − ptcFd. sC18d

It can be solved forZ:

Z =
z

ptcrmcszd
f1 − e−ptcrmcszdg. sC19d
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