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Spectral moments of correlated Wishart matrices
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We present an analytic method to determine the spectral properties of the covariance matrices constructed of
correlated Wishart random matrices. The method gives, in the limit of large matrices, exact analytic relations
between the spectral moments and the eigenvalue densities of the covariance matrices and their estimators. The
results can be used in practice to extract the information about genuine correlations from the given experi-
mental realization of random matrices.
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Wishart random matrices play an important role in the 1., 1.
multivariate statistical analysj4,2]. They are useful in some c= _l—_XX , as NX X. (5)

problems of fundamental physi¢§], communication and
information theory{3-5], internet tradind 7], and quantita- These matrices can be used as estimators of the correlation

tive finance[8—10. matricesC andA if some realization of random matricés
A Wishart ensemble of correlated random matrices is deare given. We will refer t@ anda as to covariance matrices
fined by a Gaussian probability measure: or statistically dressed correlation matrices. We will present

- an analytic method to determine the eigenvalue distribution

1 ’ and the spectral moments ofand a in the limit of large
P(X)DX =N exp[— ETrXTC_lXA_l]H dXa (1) matrix size. Another method of calculating the eigenvalue
ha=l density of correlated Wishart matrices has been recently dis-

where X=(X,,) is a real rectangular matrix of dimension cussed i{11]. _ _

N T. It has two types of indices: aN-type index running In parallel to Eq(1) one can define a Wishart ensemble of

over the set=1, ... N and aT-type index overw=1,... T.  correlated complex matrices:

Throughout the paper thé-type indices will be denoted by el _ Fm—ly A -1 e 1\im

Latin letters and th&-type by Greek onesX” denotes the PX)DX =N ex - TrXTCTXA 11 dXedXa- (6)

transpose oK. The matriceC=(C;;) andA=(A,z) are sym-

metric square matrices of dimensioNsx N and TX T, re-  The matricesC andA are now Hermitian and positive defi-

spectively. They are positive definitd/ is a normalization nite. X' denotes the Hermitian conjugate %f The normal-

constant: ization constant is nowV=(m)NT(detC)"(detA)N. In the
analysis of the complex ensemble the estimatbysof the

N=(2mNT7?(detC)"?(detA)V?, (2)  correlation matrices are replaced correspondingly by

i,a

chosen to havg P(X)DX =1.
Let Q(X) be a quantity depending of. The average of
over random matrix ensembié) is defined as

1 1
c==xXXT, a==X'X. (7)
T N

Notice that the factor one half in front of the trace in the
measure for real matricé4) is dropped in Eq(6). With this

<Q):f Q(X)P(X)DX. (3)  choice of the measure the two-point correlations take the
similar form as for real matrice@):

In particular, the two-point correlation function is <Xiax;ﬁ> =CjjAus. (8)
XiaXig) = CijAup (4) The star stands for the complex conjugation. Additionally we
) o _ ) also have
as directly follows from the Gaussian integration. In this pa- ..
per we are interested in the spectral behavior, the eigenvalue XiaXig) = (X Xjp) = 0. 9)

distribution and the spectral moments of the following ran-

. As a consequence, as we shall discuss towards the end of the
dom matrices:

paper, the matrices anda (5) in the real ensemble have an
identical largeN behavior as the corresponding matri¢@s
in the complex ensemble. Since we are interested here only

*Email address: burda@th.if.uj.edu.pl in the largeN behavior it is sufficient to consider one of the
"Email address: jjurkiew@th.if.uj.edu.pl two ensembles and draw conclusions for the other. We will
*Email address: bwaclaw@th.if.uj.edu.pl focus the presentation on the ensemble of real matrices.
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An example of a problem which can be formulated in 1
terms of Wishart random matricé$) is the following. Imag- (aup) = NE XiaXig ) =MciAag, (1)
ine that we probe a statistical systemNbtorrelated degrees '
of freedom by doindg measurements. We store the measuredvhereM¢;=(1/N)Tr C andM,;=(1/T)Tr A. This notation
values of theith degree of freedom in theth measurement will be explained later. The last equation tells us that mea-
in a rectangular matriX =(X;,). The degrees of freedom as suring the average af over the ensemblél) we obtain the
well as the measurements may be correlated. This is exnatrix C up to a constant. In other words, having a realiza-
pressed by Eq4), which tells us that the covariance matrix tion of random matriceX we can use Eq5) to estimateC.
for the correlations between degrees of freedom in the sysSimilarly, we can use to estimateA. Notice that the mea-
tem is C=(C;) and for the(autocorrelation between mea- Sure (1) is invariant under the transformatidd—bC and
surements iA=(A,). Note that in general the correlations A—b™A, whereb is an arbitrary positive real number. In
betweenX;, and X;; may have a more complicated form: Particular (c;) and (a,) are independent of the rescaling
(XiaXi2)=Ciajp, Where the matrix has double indices. Such factorb. This mdependence is ensured by the presence of the
a situation takes place if the autocorrelations are different fofactorsMa; andMc; in Egs.(10) and(11). In practical cal-
various degrees of freedom. We will not discuss this cas€ulations, if TrA and TrC are not specified, one can remove
here. Another assumption is that non-Gaussian effects can g€ _redundancy with respect to the rescaling bysetting
neglected. Such effects might come about if there were coltl/DTr A=(1/N)Tr C. In this case the constant¥l,,
lective correlations between many degrees of freedontMci can be determined from the data by evaluating the
or heavy tails in the distribution of an individual degree of traces ofc or a:
freedom. 1 1

A perfect example of the situation described above is the Mgy =Ma = \/—Tr<c> = \/—Tr<a>.
problem of optimal portfolio assessment—one of the funda- N T

mental problems of quantitative finance. The portfolio as- \yhjle considering the covariance matrices for the Wishart
sessment is based on the knowledge of the covariance matrghsemble we can formulate two reciprocal problems, which
C for stocks’ returng 12]. In practice, the covariance matrix e shall calldirect andinverse problemsin the direct prob-
is estimated from the historical data which are stored in 31, we want to learn as much as possible about the probabil-
rectangular matrix representing historical values ofN ity distribution of the estimators anda (5) assuming that

stocks. Fluctuations of returns are well described by thene matricesC and A are given. In particular, we want to
Gaussian ensembl&). The estimator of the covariance ma- calculate the eigenvalue density functions: '

trix is given by Eq.(5). Another problem of modern financial
analysis which can be directly cast into the foff is the 1 N
problem of taste matchingy]. This problem is encountered pc(N) = NE dN=N) /,
for instance in the large-scale internet trading. =1
It is worth mentioning that the random matrix framework
may also be used in a statistical description of data generated 14
in Monte Carlo simulations for a system with many degrees pa(\) = ?2 AN=Xy) /,
of freedom, in particular of data concerning the correlation o=l
functions. One frequently encounters such a problem iwhere\; and\, are eigenvalues af anda, respectively. The
Monte Carlo simulations of lattice field theory, where the determination of the eigenvalue density functions is equiva-
field is represented by correlated numbers distributed on fnt to the determination of all their spectral moments:
lattice. Usually, one is forced to use a dynamical Monte
Carlo algorithm to sample such a system. The basic idea mck=Jd?\Pc()\)>\k:<$Tf Ck>,

standing behind a dynamical algorithm is to generate a Mar-

kov chain—a sort of a random walk—in the space of con-

figurations. The degrees of freedom on the lattice as well as

the successive configurations are usually correlated. Outside My = f dhp,(NNK= <—Tr ak>.
a critical region no long range correlations are observed and

the fluctuations can be treated as Gaussian. The momentsn,, m,, are related to each other
Complex random matrices are useful for instance in tele- -
communication or information theof3—5]. Mgy =™ Mgy, (12)

Let us come back to the ensemble of real matr{dgsAs
we mentioned the matricé5) can be treated as estimators of
the correlation matrice§ andA. Indeed from Eq(4) we see TrXXT- - XXT=Tr XX - X" X.
that

wherer=N/T, as follows from the cyclicity of the trace:

In the inverse problem we want to learn as much as possible
about the genuine correlations in the system, which are given
1 by C andA, using a measured sample of random matries
(ci)y= _2 X X: Y =Ma:Ci: (10) We can do this by computing the estimatoranda (5) and
ij ia o AL ; . ; .
T relating them to matrice§, A. In particular we would like to
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estimate the eigenvalue distributions and the moments of 1 1 1-r
C A =Trg,(2) =r>=Trgurz) + —. (20)
P T N z
1 1o
M= —TrCK= => Aik Applying now Eq.(18) we have
N Nz
pa(N) = r%pc(r\) + (1 =1)8(N). (21)
T
M ay = ETrAk: EE AK The meaning of the last term on the right-hand side of this
AT T equation is that there afe-N zero modes in the matria if

. . T>N. The zero modes disappear whiiF=T. Moving the
whereA; and A, are eigenvalues o andA, respectively.  term containing the delta function to the other side of equa-

The inverse problem is very important for practical applica-tion dividing both sides of the equation by and substitut-
tions, since in practice it is very common to reconstruct theng the parameter by s=T/N=1/r we obtain

properties of the underlying system from the experimental
data. _ , , Pe(N) =S%pa(SN) + (1 =9)8N). (22)

In the analysis of the spectral properties of the matraces
and c it is convenient to apply the Green's function tech- Therefore, forT <N the zero modes appear in the spectrum
nique. One can define Green’s functions for the correlatiom(\). In this case it is more convenient to use the parameter
matrix C and its statistically fluctuating counterpart s=1/r instead ofr. The zero modes appear in the eigenvalue
distribution of eithera or c. The two equation§21) and(22)

Ge(2) = ! , (13 are dual to each other. Fors=1 they are identical. Because
z1y-C of the duality it is sufficient to solve the problem for 1.
We will present a solution for the limit=N/T=const1
9@ :< 1 > (14) and N— o« neglecting effects of the order M/ expanding
¢ z1y-c¢/’ Green'’s function in 1N. The largeN limit and the 1N ex-

i pansion are well defined if the spectra of the matrigesnd
and correspondingla(z) andg,(2) for A anda. The sym- ¢ are hounded from above by a constant independent of

bol 1 stands for the\ X N identity matrix. A corresponding  Otherwise the moments’ expansion and the generating func-
symbol1; appears in the definition dA(z) andg,(2). The  tions do not exist in this limit.

Green'’s functions are related to the generating functions for ysing a diagrammatic methofll3—15 one can write

the moments: down a close set of equations for the Green’s function
“ Mo 1 gc(z) (14):
Mc(@) =2 —F = [ Tr(zGc(2) - 1, (15) L
k=1
Z) = T < c\Z) = i <
) 9:(2 Z1y-3(2) G2 Tl - 3.2
m@=3 ™ = STr(zg2) - 1 (16
@z N ’ 22 =CTHAG(2), (2 =ATr(Cg(2). (23)
or inversely The set contains four equation for four unknown matrices
1 1+Mc(2) including g.(z2) which we want to calculate, and three auxil-
NTr Ge(2) = Sy iary ones:g«.(2), 2(2), andX+.(2) (see Appendix A Each

of them can be interpreted in terms of a generating function
for appropriately weighted diagrams with two external lines:
1+—mc(z). (17) 0:(2), g+(2) for all diagrams an&(z), 2«.(2) for one-line-

z irreducible diagram$13-15 (see Appendix A In the limit
N— o the weights of nonplanar diagrams vanish at least as
/N. Thus in this limit only planar diagrams give a contri-

ution to the Green'’s function. Therefore, the laMyémit is
alternatively called the planar limit. The diagrammatic equa-
1+mg(\+i0%) tions (23) hold only in this limit. An analogous set of equa-
\N+i0ot tions can be written for the Green’s functigg(z). The equa-
(18) tions are identical to those of E@23) if one exchanges
a<—c, A—C and T+ N. The two sets can be solved inde-
and similarly forp,(\). The eigenvalue densitigg,(\) are  pendently of each other. However, as follows from the dual-
not independent. As follows from E¢L2) the corresponding ity (20) it is sufficient to solve only one of them and deduce

1

NTr gc(z) =
The analogous relations exist fdB,(z) and g,(2). The
Green'’s functions can be used for finding the densities o
eigenvalues:

1 1 1
peN) === 1Im =Trg(A +i0") === Im
T N T

generating function$16) fulfill the equation the solution of the other.
_ Equations(23) can be solved fog.(z) by a successive
My(2) =rm(rz). (19 elimination ofg..(2), 2:(2), andX..(z). However, the result-
Combining the last equation with E¢L7) we obtain ing equation forg.(2) is very entangled14]:
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A -1 Because of this practical limitation one cannot entirely solve
9:(2) = <21N e ToA Tr(Cg (Z))> (24 the inverse problem. However, as we discussefiLB] the
T ¢ inverse problem can be partially solved even in specific prac-
and cannot be easily used in practice for analytical calculatical applications using a moments method. Let us sketch this
tions of the momentsny or spectral density.(\). If one  method below.
takes trace on both sides of the equation one does not get a We can gain some insight into the spectral properties of
close formula for Tig(z) since the matrixg.(z) appears the correlation matrixC by determining the relation between
in the combination T€g.(2) on the right-hand side of the the momentdM¢, and my. Expanding the functionM(z)
equation. andm.(2) in Eqg. (28) in 1/z using Egs.(15 and (16) and
Below we will present an alternative method of solving comparing the coefficients at #/we obtain
Eqg. (23), along the lines proposed if5], which gives a

close scalar equation for Ge(z) and thus also equations for Mgy = Mey,
the moments and spectral density of the maitrixThis 5
method relies on introducing a new complex variableon- Mgz = Mg+ Mgy,
jugate toz which is defined by the equation
M(2) =Mc(2). (25) Mg =Mcg + 3MeiMez + r*Mey,

At the first glance this equation looks useless because it M€ mey = Mg+ 2r(M2, + 2MiMc) + 6r2M2 My + r3ME,,
fers to an unknown functiom,(z) which we actually want to
determine. Quite contrary to this, as we shall see, the intro- (30)
duction of the conjugate variablé allows us to write down

a close functional equation fan.(z). First, let us illustrate We can also invert the equations fibtg,. The result of in-
how the method works foA =1 [15]. In this case, the elimi- version gives a set of equations which can be directly ob-

nation of the auxiliary function§23) leads to tained from the 1Z expansion of the functions in E§29)
. which is the inverse transform of E(R8). We can also de-
Z=——, (26) termine the corresponding relations for “negative” moments
1+rmy(2) My andMcg,, that is fork<0, or determine the spectral den-
or equivalently to sity p.(\) [15]. Using a computer tool for symbolic calcula-
tions one can easily write a program which successively gen-
z=27[1+rMc(2)]. (27) erates the relations between spectral moméa@ from
Suppose we solve the direct problem. In this case we knoFd: (28). i i i
the matrixC and hence also the generating functg(2). The calculations get more compllcat_e(_j in th_e g_ene_ral case
Inserting Eq.(26) to Eq. (25) we obtain a close compact when bothC andA are arbitrary. The gqldmg prlnqlple is the
functional relation fomd(2): same, though. We introduce the conjugate variabl&5)

and, using it, write down the solution of Eg&3). In the
z ) direct problem we assume that the generating functions
1+rm(2)/’ Mc(Z) andM4(2) are known. We will show that in this case
the solution of Eq(23) takes a form of an explicit equation

If Mc(2) has a simple form, one can solve the equation fort, ;- 7) ‘\where the functio(2) depends on the functions
m.(z) analytically [15]. All the cases considered there con- Mc(Z) and M4(2). Inserting this solution back to E423)

cern the matrixC having one, two or three distinct eigenval- we eventually obtain a functional equatiom(z(2))

ues. In gen_eral, foC havmg more than three e|genvalges:MC(Z) from which we can extract the function,(2).
one can write a numerical program to calculate the eigen- The solution of Eq(23) takes the form:

value densityp(\) from the last equation for any given
Mc(2) and thus for any correlation matrie. This is easier ;7 1o
than solving Eq.(24) because we have only one equation Z = $2
with one unknown variablen.. In case of solving the inverse a=l
problem, we assume that we can determine momemnts

from the data and hence that we can approximate the gengfjere A  are eigenvalues k. It can be rewritten as
ating functionm.(z). Then we can insert E427) to Eq.(25) “

my(2) = Mc( (28)

ST (31)

z
1A~ Mc(2)

) : : ) ,

and obtain a functional equation f(2): Mo(2) = MA( ) 32)
Mc(2) = my(Z[1 +Mc(2)). (29) "ZMc(2)

The problem is solved in principle. However, in practical @d can be formally solved fax

terms the inverse problem is much more difficult, because z:ZrMC(Z)M,Ql(rM «(2)), (33)

one cannot compute all experimental momemtg with an

arbitrary accuracy, unless one has an infinitely long series othere M, is the inverse function oM,. Thus we have
measurements. But one never has. In practice one can estibtained an explicit equation far=z(Z) in terms of the
mate only a few lower moments,, with a good accuracy. known functionsM, andMc. One can easily check that for
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A=1; the last equation reduces to E@7). In this case this number is less or equal to four. If it is larger the problem

Ma(2)=1/(z-1) and M;\l(z):1+1/z. can be handled numerically. The duality tells us that the so-
Combining the equation for=z(Z) given by Eq.(33) lution also holds when we change the rolesfofndC.

with Eq. (25) we arrive at a close equation for the generating Below we will discuss the case of exponential autocorre-

function my(Z). It can be used for example to calculate thelations. Exponential correlations are encountered in many

momentsm,’s (see Appendix B The calculations yield a set situations. The general solution, which we have discussed so

of equations expressingys in terms of the bare moments far, simplifies in this case to a more compact relation for the

Mk and Mgy Green’s function, which allows us to find analytically an ap-
proximate form of the eigenvalue density of the random ma-
Meg = MciMaa, tricesc anda. The approximation becomes exact in the large
N limit. We consider purely exponential autocorrelations
Mo = McMa; + M2 Mo, given by the autocorrelation matrix

A z=exd-|a- Biit], 36
mc3:MC3M,31-\1+3rMClMC2MA1MA2+rZM?:lMASv A A== Al] (36)

wheret controls the range of autocorrelations. The inverse of

Mes = MM, + 2r(MZ, + 2M o Mcg)MZ Mo, the matrixA reads
+ 2r2MZ M co(M3, + 2MaiMag) + 13ME Mg, e, -1,
o L -1, 2¢c,, -1,
(34) Al=— . (37
The equations reduce to the for(30) for A=1. 28 -1, 2¢,, -1
Using the relationg12) we can also determine the mo- ’ ’
ments of the matria. It is more convenient to write them B -1l & |

using the variabls=r"*—the dual counterpart af—instead We have introduced here a shorthand notatiprexp(1/t),

of r itself: c,=coshi1/t) ands,=sinh(1/t). The spectrum of this matrix
My = MaiMc, can be approxi_mated by the spectrum of a malt_/nix
2 2 2c;, -1, -1
Maz = MaMgy + SMaMeo, _1 2e -1
l 1y ]
1
Mys = MagME; + 3SMatMagMciMc, + MR Mes, M T 25, . (39
-1, 2¢,, -1
May = MagME, + 25(M3 5+ 2Ma1Mag)ME; Mo -1, -1, 2¢;
+ 28°M3;Ma2(ME, + 2MciMcs) + M Mcy, whose eigenvalues can be found analytically:
(35) Mo =[Cy+ cogmalT)]/s;.

The equations are completely symmetric to E84) with  The corresponding eigenvectors are given by the Fourier
respect to the change— s (which amounts tdN«—T), and modes. The matrix £-M can be viewed as of a sum:
c—a, C—A. Using the method one can obtain E434)  (2c;-2)1;+Aq, of a unity matrix multiplied by a constant
and(35) to an arbitrary order. and a discretized one-dimensional Laplacignfor a cyclic

The above relations are useful for computing the dressedhain of lengthT. The matrixA™! can be obtained frorv
momentsmy,, my, for given matricesA,C or inversely, the by adding to it a perturbatiorP: A™'=M +P, where P
genuine momentM M, from the experimental data. As has only four nonvanishing element®;,;=P;=¢€;* and
mentioned, the spectral moments give us in principle fullP,;=Py;=1. The first order corrections to the eigenvalues of
information about the eigenvalue distribution. In practice theA™%, which stem from the perturbatid? behave as 1. The
reconstruction of the eigenvalue density may be difficult, beperturbationP can be viewed as a change of a boundary
cause to do it we would need to know all moments with acondition of the Laplacian. As usual, boundary conditions
very good precision. Usually, in practical applications oneaffect mostly the longestsmall momenturmnmodes. Indeed,
can accurately evaluate only a few lower moments. a careful analysis shows that the two diagonal terms of the

In some special cases if we can make some extra assumperturbation matrix,P;;=Pyy, introduce a constant correc-
tion about the form of the matrica&S or A we can improve tion independent ofl of the lowest eigenvalues which does
significantly the reconstruction of the eigenvalue density. Imot vanish whenT goes to infinity. However, since the dif-
the previous wor15] we have analyzed the casedE1l;  ferences between unperturbed eigenvalued aind the cor-
and of the matrixC which had only a few distinct eigenval- responding perturbed eigenvalues Af! disappear for all
ues. In this case the Green’s functigi(z) is given by an other eigenvalues, we expect that foT the spectral
algebraic equation of the order which is equal to the numbeproperties ofA can be well approximated by the eigenvalues
of distinct eigenvalues. It can be analytically solved whenof ML
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TABLE I. The momentsM 5, Ma3 and My, of the matrixA (36) for three values of the autocorrelation lengthl,5, 10calculated

numerically for finite sizeT=20, ...,500 and by the analytic form
values given by Eq(45) asT/t tends to infinity.

uld5) which corresponds td=«. The finite size values approach the

t=1

t=5 t=10
T Ma2 Maz Mas T Ma2 Ma3 Mag T Mao Mas Mas
20 1.29493 2.01479 3.48620 20 4.44996 28.6455 204.107 20 7.58726 79.6134 891.336
50 1.30579 2.05757 3.60838 50 4.81980 34.2544 271.932 50 9.03668 120.509 1784.56
100 1.30941 2.07183 3.64911 100 4.94314 36.1292 294.733 100 9.53497 135.501 2146.93
200 1.31123 2.07896 3.66947 200 5.00482 37.0666 306.133 200 9.78414 143.001 2328.48
500 1.31231 2.08324 3.68169 500 5.04182 37.6290 312.973 500 9.93364 147.501 2437.40
o0 1.31304 2.08609 3.68983 = 5.06649 38.0040 317534 10.0333 150.501 2510.02
1 =Mcq,
Aaz—:#_ (39) M1 c1
M, Cpt+cogmalT) )
My =Mea+ Mg -1y,
In this limit we can also approximate the su@®1) by an
integral: - a3 (32 1
M3 =Mcaz+ 3rMciMcs -ty +1°Mg, Etl_ 5)
z s (7 dr
== 40 =My + 2r(MZ, + 2M i Mca)ty + 2r2M2, M co(4t2 - 1
z Wfo (cy—s1F) + cosr (40 Mea c4 (Mg, ciMcaty ciMco(4t7- 1)

where 7=7a/T and the symbolF=(Z/z)rm(z) is intro-
duced for brevity. Note that in the definition &f we have
replacedM(Z), which would rather be dictated by E@®1),
by m.(z). This change is legitimate due to E®5). The
integral (40) can be done:

z s

S 41
Z \(c,-sF)P-1 4y

Setting back-=(Z/z)rm.(z) we eventually obtain
_crmy(2) - Vs +1rPmi(2) 42

Sl[rzmi(Z) -1]

This is an explicit equation foZ=Z(z) which can be now
inserted tom,(z)=M¢(2) giving us a compact relation for

m.(2) in the presence of the exponential autocorrelation
(36):

(2)=M ( cyrmy(2) - Vsg+ r2m§(z)) (43)
e AT sPmt@-1 )
In the Ilimt t—O0, the parameters s;=sinh(1/t),

c,=coshl/t) and e;=exp(1/t) increase to infinity and
ci/le;=s,/e;=1. As a consequence, the form of Ed2)
simplifies to Eq.(26), which corresponds to the case without
autocorrelations, as expected. Using E&B) we can recur-
sively generate equations for the consecutive moments:

02611

5
+ r3M401<

3
oh”

—t
o'l

)
(44)

where t;=c;/s;=coth(1/t). The coefficients on the right-
hand side, which depend dp can be directly expressed in
terms of the momentM ,, of the matrixA. Approximating
again a sum by an integral in the largidimit we can write

T
1 S dr
S R e
=1 mJy (cy+cosT)
The integrals can be calculated yielding
Mar =1,
Maz2 =11,
Maa= §t2 1
A3~ 2 1 2;
S
5
MA4_2ti_ ty,

(45)

We see that if we insert these coefficients into H§4) we
obtain Eq.(44). This is a consistency check for the approxi-
mation which we use here. The quality of this approximation
can also be checked by comparing the moméig of the
matrix (36) for finite T with the result(45) which corre-
sponds talr =<, We expect that for< T the numerical values
shall approach the resu#5). The results of this comparison
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distribution approaches zero whenincreases, but zero

L2 \ modes do not appear in the distribution as long &sl. The
1f i ] formula (43) applies to any correlation matri€ but in the
general case one has to use a numerical procedure to calcu-
_0.8p iy ] late from it the density function.
55 06 Let us stop here the presentation of results for the en-
S semble of real matrices. As we mentioned all results in the
0.4 large N limit hold also in the ensemble of complex matrices
if the covariance matrice) are replaced by Eq7). The
0.2 reason why it is so is related to the fact that the moments of
c=(1/T)XX" in the ensemble of complex matricés) are
0 5 equal to the moments af=(1/T)XX" in the real ensemble
(1) up to a 1N corrections which disappear in the larlye
FIG. 1. The density of eigenvalugg(\) for exponential matrix limit:
A,C=1y,r=0.2 and for three different autocorrelation times 1 1 t k _ 1 1 ; k
=0 (solid line), t=2 (dashed ling andt=5 (dotted ling. NALTRX =N\ TRX +O(N).
complex real

confirm our expectationgsee Table)l Thus we see that the (53)
formula (44) for m.(2) in the presence of the exponential Let us illustrate this by explicit calculations of the second
autocorrelations becomes exact in the liffite. This for- moment. Using the Wick's theorem for Gaussian integrals
mula allows us to compute the eigenvalue distribution of theand Eq.(4) for the two-point correlation function, we have
random matricex and a (5). Let us illustrate this on the < 2 1

simplest example of the system which has no correlations:— (—XX T) = — (XXX sXi )
that means that =1 andMc(Z)=1/(Z-1). In this case Eq. T NT

(43) for m.(z) takes the form 1

= ——{XKiXj XX pXig) + (XioXi pX X Xip)
tx2 l(x2 D(X+r1) = xV1+x4s2=0 (46) NT
g AT + (XXX X0}
where we used the notatiox(z)=rmy(z). For t—0

1
(A —17) this equation reduces to - W{CHAMCNABB * CiiAagCijAag

1 +C:A .C:A
(x- 1){x— “x+ Dx+ r)] =0, (47) CiPAapCiiAagt
r
=McaMa, +IMZ Mz + —McoMps.
which has a solution caVlar T VlcaMaz + 1 MeaMaz
1 T The corresponding calculations for the complex ensemble
X@)=2C1-r=iN(u=2)(2z-p)+2, (48 peaq
- 2
whereu, =(1+r)?, which leads to the well-known result for 1<<EXXT) > - %(Xiaxf X'Bxi* )
the uncorrelated Wishart ensemble: NANT NT JIETE
1 3” - )\ )\ - — _ 1 * * * *
iy = o AT (49) = XXX + (XX (%X
T
Fort>0 it is still possible to find analytically a solution of * XiaX) p) (X Xigh
Eq. (46). Let us rewrite Eq(46) as a polynomial equation: 1
= ——{CiiAuaCiiAss + CiiAusCi A
- XL +XS)) + (14,2 = (r + X (¢ = 1))?=0. N2t CirAaaCifas * CiagCifal
It has two trivial solutionsx=*1. Dividing out the polyno- =McoMag +IME Mo

mial (x-1)(x+1) we get The difference between the two calculations appears in the

X+ 23(r —ty2) + x3(— L+r2=2tyrz+ 22 - 2rx — r?=0. third term which in the real ensemble gives a contribution of
(50) the order 1N while in the complex ensemble disappears by
virtue of Eq. (9). We recognize thaMc,M4;+rMZ&;Ma,
This is a quartic equation which can be solved analyticallywhich are the leading terms in the N /expansion are iden-
by the Ferrari method. We will not present the formal solu-tical as in the second equation in the &&t). Generally one
tion which is neither transparent nor informative. Instead, wecan show that the leading contributions which correspond to
show in Fig. 1 the eigenvalue density functiopg\), for  the planar diagrams in the expansiorggz) are identical for
differentt, resulting from this solution. The lower part of the both ensembles. Nonplanar diagrams are different but they

026111-7



BURDA, JURKIEWICZ, AND WACLAW PHYSICAL REVIEW E 71, 026111(2005

contribute in the subleading orders: it turns out that in theexponential(36). If the correlations are of the form which
diagrammatic expansion of the Green'’s funct@() for the  depends on the time differenég, ;=A(|a— g|) then one can
complex matrix ensemblg), which would be a counterpart apply Fourier transform to determine in the lafGdimit an

of Eq. (A1) in Appendix A, all diagrams which contain a approximate spectrum of the matrx and approximate val-
double arc whose dashed and solid lines cross each other ajgs of its spectral moments. Some details are given in Ap-

identically equal zero, since such an arc corresponds to thgendix C.

propagator(X;,X;g) or (X, Xs. A crossing of two arcs is ~ Another interesting issue which can be addressed in the

however allowed and leads to a factomNE/ future is the determination of the probability distribution for
To summarize, in the paper we considered a Wishart enindividual elements of the covariance matri@eanda simi-

semble of correlated random matrices. We obtained in théarly as it was done for the uncorrelated cfs6.

limit of large matrices a close set of equations relating the

Green’s function or equivalently the moments’ generating

functions my(z) and m,(z) for statistically dressed correla-

tions to the generating functions for genuine correlation ma- We thank R. Janik, A. Jarosz, and M.A. Nowak for dis-

tricesM¢(z) and M4(2). The equations in the largd limit cussions. This work was partially supported by the Polish

are the same for the ensemble of real and complex matriceState  Committee for Scientific Resear¢dKBN) grants

Using these equations we can write down exact relation@P03B 096222002-2004 and 2P03B-0822%2003-2006,

between genuine and experimental spectral moments of coand by EU IST Center of Excellence “COPIRA.”

relation functions of an arbitrary order. The relations can be

used in practical problems to learn about correlations in the APPENDIX A

studied system from the experimental samples. In the case of

exponential correlations we have also found an explicit form For completeness we recall here the graphical representa-

the spectral density function of the covariance matrix. Ation of the Green'’s function. The details of the diagrammatic

natural generalization of the work presented here is to conmethod can be found ifiL3-15. The Green’s functiom.(2)

sider a more general type of time correlations than purelycan be represented as a sum over diagrams:

ACKNOWLEDGMENTS

+. (A1)

where theN-type andT-type indices oX are denoted by filled and empty circles, respectively. The matiix denoted by an
ordered pair of neighboring filled and empty circles, whilé is drawn as an pair of such circles in the reverse order. A
horizontal solid line stands fdky/z, a dashed line fot/T, a solid arc forC and a dashed arc fé. The two point function
(4) is drawn as a double arc. Matrices on a line are multiplied in the order of appearance on this line. If a line is closed, the
trace is taken.

In the thermodynamical limit only planar diagrams give contributiogtdn particular the last term in E¢A1) vanishes.
The Green’s functiorg.(z) is represented by an identical set of diagrams with dashed and solid lines exchanged. It is
convenient to introduce one-line irreducible diagrams and corresponding generating ful¥tiamsl 3... The Green'’s
functions can be expressed in terms3gfand . as follows:

(A2)

ffff i SERR P
S B\ = + ") + C By By
(SO o T 0----- 0 0--0--2%0p--0 0--0--p-.0-EH- 0 -

(A3)

In the planar limit there are two additional equations which relate the sums over one-line irreducible diagrams to the Green'’s
functions:

(A4)
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Analogous diagrammatic equations can be written ggor

PHYSICAL REVIEW El, 026111(2005

—-(T-1)/2+1,...(T-1)/2. The same holds for the index

with the only difference that the solid line shall denote thewhich enumerates the eigenvalues. We are interested in the

propagatorl;/z and the dashed shall line dendtg/N.

APPENDIX B

In this appendix we use Eq§33) and (25) to determine
the relations(34). As for the caseA=1; we shall do this
using 1/ expansion. The functioM(2) is given by the
series

Ma1
Z

M
A2 |

MA3
ZZ + ..

23

Ma(2) = (B1)

Let us determine the expansion for the inverse funchityt
as a series around zero:

MANY) = Mary ML + sy + poy? + --+). (B2)

spectrum of the matri in the limit of T—oc. In this limit
the eigenvectors can be approximatedelsyy.

oo

E At — s)ei S — E At- S)e—iw(t—s)ei ot

S=—© S=—0

oo

[

- E A( k) e—i wkei wt

k=—o
= Alw)€“t, (C2

where
Aw) = D, AK)eTok, (C3)

k=—o0

The coefficients of the series can be directly calculated frontor finite T the range of summation over the indkxt-s

the condition

y=Ma(MA()), (B3)
which gives us
Ma2 MasMa1 = (Mao)?
= , = . .... (B4
f (Map)? H2 (Map)?
Equation(33) takes the form
2=MarZ[1 +utMc(2) + uar®ME(2) + 1. (B5)

or, if written for 1/z,

1 11
STz M) + (ui = pI?ME@) + -1,
Al
(B6)
where
Mc: Me, M
Mc(2) = ZCl + 2‘232 + 2‘333 + e (B7)

Thus we have expressedZlds a series of . Inserting this
series to Eq.(25) and comparing coefficients at 24 we
eventually obtain Eq(34).

APPENDIX C

Let A be aTXT symmetric square matrix such that
A.s=Ag,=A(la—p|). Assume also tha(0)>A(1)>A(2)

>--->A(T-1)>0. One can show that under this assump-

tion the matrixA is positive definite. The eigenproblem for
this matrix can be written in the form:

T2

> At=9)X,(s) = A X,(1).

s=-T/2+1

(C1)

depends or: t—T/2<k<t+T/2. Only in the limitT— <o it
becomes independent tifk € (=, ). The limit T—o can
be safely taken only ifA(t) vanishes fast enough for
t— 0. For example, ifA(t) ~1/|t|* for a<1 the sum on
the right-hand side in EC3) is divergent fore=0. In other
words, in this case one cannot blindly take the lafgémit
since the results explicitly depend dn From here on we
assume thad\(t) falls off fast enough whehgoes to infinity.

The frequencyw: —m<w< 7 from Eq.(C3) is related to
the index « from Eq. (Cl) as w=27a/T. For T—x the
frequency w becomes a continuous variable. The inverse
transform to Eq(C3) reads

Ak) = %T f ! do A(w)e, (C4)

Actually Eq. (C3) holds only for infiniteT. In this case the
eigenvalues are degeneratdw)=A(-w) as follows from
inserting A(k) =A(-k) to Eq. (C3). For finite T the boundary
conditions affect the spectrum. The diagonal striplike struc-
ture of the matrixA,z=A(la- B)) is broken at the corners of
the matrix since for example the upper leftmost element of
the matrix has no left neighbor. It turns out that the breaking
of this structure is sufficient to lift the degeneration of eigen-
values. In this case the index is better mapped into the
range KX w=mwa/T<m. These effects have to be studied
carefully if one wants to consider corrections to the lafge
formula. We will discuss here only the leading order approxi-
mation given by Eq{C3). In this approximation Eq(31)
takes the form

m

1
dw

2w)_,

Ao 1

f” A w)
1-AwF  7w),

dwl—A(w)F'

z
==
(CH

We recall thatF=(Z/z)rmy(z). In the second step we used

In the equation above it is convenient to choose the sat of A(w)=A(-w). Thus the problem of determining the map

values, which the index may assume, to beT#2+1,
-T/2+2,...,T/2. This choice is appropriate if is even,
while if T is odd one should rather choosdT—1)/2,

Z=Z(z) is reduced to calculating the Fourier transfofrtw)
of A(k) (C3). Similarly thekth moment of the spectrum of
the matrixA is approximated by
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(™ . change the integration limits in the integi@5) we obtain
Mak = ;f A w)do. (C6)  an equation
0
We will now present some examples of applying this tech- Z_ lf — do o , (C13
nique. Let us begin with multiexponential correlations: Z wlo (V2mt) e 2 -F
A(t)==;a; exp(-|t|/t}). The Fourier transforn{C3) can be L
exactly calculated: which yields
Aw=3 C 2 1% A (2mtF) = ———Li (2P,
- = N £TT N £TT

(@)= a‘ COS{ o)’ €7 z \r27T’[ ooy N2 V2mt F vz
where ¢;=cosh1/t;) and s=sinh(1/t;). Using Eq.(C5) we (C14
obtain where Li,(x) is polylogarithm(or actually its generalization

to fractional-indexa):
i \(c —SF)

“on
| | | | Li0=3 " . (c15)
This algebraic equation can be solved analytically #or n=1 N
=Z(z) for purely exponential correlation&(t)=exp(—|t|/t.) _ _ _
which lead to a quadratic equati#d?) as discussed in the NSErtingF=(Z/2)rm¢(z) we can solve this equation farby
main body of the text or for double exponential correlationsinVerting the function Lj,:
A(t)=a, exp(—|t|/t;) +a, exp(—|t|/t,) which leads to a Ferrari 1 o
equation forZ. Z=———LijH(\2atgmy(2)). (C16)

Let us now discuss correlations with a Gaussian autocor- V27t rme(z)

relation function:A(t) =exp(~t*/(21¢)). In this case one can- The coefficientsa, of series corresponding to the inverse
not analytically determine the su(@3) but one can approxi- fynction Lij(y)==7_,ay" can be found recursively by in-

mate it by an integral: verting the serie$C15) to an arbitrary order.
o ‘ Similarly one can treat the correlations of the type
Aw) “j dk Ak)e™ X, (C9  At)=1/(t/tJ?+1). One obtains
. - . i i (7Tt )k 1
which can be done analytically as a Gaussian integral, Aw) = e %, Mp=—c—, (C17
yielding k
Alw) = \,Ztce—wztﬁ/z_ (C10 which agree with numerical results. The equation for
Z=Z7Z(2) reads
If we replace the surfC3) by the integralC9) in the Fourier
transform therk becomes a continuous variable and we have z_
i i i ; =— dwz (mtFe@kon
to correspondingly replace the range of integration avén 7 o (tom) ewtc_
the inverse transform. Instead of E§4) we have
1 (" . E
- — i wk (
A(k) 27rj_x do A(w)e'“, (C1) .= n
and correspondingly = lt In(1 - mt.F). (C18
l
1 0 (277)(k—1)/2 1 C
Maic= _f Aw)do = ——=—1"". (C12 |t can be solved foZ:
m™Jo \’k
This result is in a very good agreement with the numerical = [1-ememd@], (C19
computations for largel and sufficiently smallt.. If we mtrmg(2)
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